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Abstract: Land fragmentation is widely known to have an impact on farm performance. However, previous studies 
investigating this impact mainly focused on a single crop, and only limited data from China are available. This study 
considers multiple crops to identify the impact of land fragmentation (LF), as well as cropping system (CS), on farm 
productivity and the efficiency of grain producers in the North China Plain (NCP), using Cangxian County of Hebei 
Province as an example. Detailed household- and plot-level survey data are applied and four stochastic frontier and 
inefficiency models are developed. These models include different sets of key variables in either the production 
function or the inefficiency models, in order to investigate all possibilities of their influences on farm productivity and 
efficiency. The results show that LF plays a significant and detrimental role, affecting both productivity and efficiency. 
A positive effect is evident with respect to the CS variable, i.e., multiple cropping index (MCI), and the wheat-maize 
double CS, rather than the maize single CS, is usually associated with higher farm productivity and efficiency. In 
addition to LF and CS, four basic production input variables (labor, seed, pesticide and irrigation), also significantly 
affect farmers’ productivity, while the age of the household head and the ratio of the off-farm labor to total labor are 
significantly relevant to technical inefficiency. Policies geared toward the promotion of land transfer and the rational 
adjustment of cropping systems are recommended for boosting farm productivity and efficiency, and thus main-
taining the food supply while mitigating the overexploitation of groundwater in the NCP. 
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1  Introduction 
Agricultural land is vital for human society as the major 
source of food production. Agricultural land reforms, e.g., 
redistribution of land, usually play significant roles in re-
lieving starvation and poverty; and China is no exception to 
this (Yao, 2000; Fritz et al., 2015; Zuo et al., 2018; Wang et 
al., 2020). The introduction of the Household Responsibility 

System (HRS) in the early 1980s, which confirmed the 
dominant role of the household in agricultural land use de-
cisions, has improved land productivity and boosted food 
production in China (Lin, 1992; Long, 2014). However, land 
fragmentation (LF), referring to the management of several 
non-contiguous land plots as a single production unit 
(McPherson, 1982; Lu et al., 2018; Tran and Vu, 2019), also 
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had its origin from the introduction of the HRS in China. LF 
is mainly caused by the application of egalitarian principles 
in the land distribution and reallocation processes under the 
HRS (Yang, 1995; Tan et al., 2006; Qin et al., 2011). Addi-
tionally, artificial land occupation, together with other fac-
tors, aggravated LF across China after 1998, when the Land 
Administrative Laws were issued. These Laws stated that 
individual households could extend the deadline of their 
contracted land for another 30 years, and land reallocation 
has only rarely been carried out ever since (Su et al., 2014; 
Cheng et al., 2015; Yu et al., 2018). 

LF is believed to have a negative effect on agricultural 
performance globally (Manjunatha et al., 2013; Lu et al., 
2018; Tran and Vu, 2019). However, there are not very 
many relevant studies on grain producers at micro levels in 
China, and most available studies focused on the impact of 
LF on the productivity and efficiency of a single crop, e.g. 
rice, maize, peanut or barley (Tan et al., 2010; Zhou et al., 
2013; Jia et al., 2017; Zhang et al., 2018). In this context, 
more case studies are needed, and their scope should be 
extended to multiple crops, because when farmers allocate 
their available resources to plots of land, they usually make 
decisions according to the profit of the whole farm, rather 
than the profit from just a single crop (Manjunatha et al., 
2013; Zhang et al., 2016).  

The North China Plain (NCP) is one of the major food 
producing areas in China, which has also been suffering 
incrementally in the degree of LF during 2000–2017 (Yu et 
al., 2018). In the NCP, a winter wheat-summer maize double 
cropping system (CS) is usually adopted, and about 
two-thirds of China’s wheat and more than one-third of its 
maize are provided by this region (Meng et al., 2012; Zhong 
et al., 2017). However, a fallow land policy implemented in 
the NCP aims to reduce the sown area of winter wheat and 
to induce the recovery and restoration of groundwater; and 
this coincides with the abandonment of winter wheat by 
local farmers (Wang et al., 2016; Wu and Xie, 2017). 
Therefore, the NCP is undergoing CS changes. The area 
adopting the maize single CS is increasing while the area 
adopting the double CS is decreasing (Wang et al., 2016; 
Wang and Li, 2018b). Given that the CS can also influence 
farm performance (Yang et al., 2015; Yang et al., 2017; 
Nasrallah et al., 2020), this study focused not only on the 
impact of LF, but also on the impact of CS on the farm pro-
ductivity and technical efficiency (TE) of grain producers in 
the NCP.  

In this study, Cangxian County, a typical grain production 
county in the NCP, is selected as the case study area. Survey 
data from 350 households in Cangxian County are used and 
the stochastic production frontier approach is applied, with 
the goal of quantifying the impacts of LF and CS on farm 
productivity and TE. In addition, policy recommendations 
are given for improving farm productivity and efficiency, in 
order to ensure the secure supply of food under the back-

ground of the fallow land policy in the NCP. 

2  Research methodology 
2.1  Case study area 
This study is carried out in one of the typical agricultural 
production counties in the NCP, i.e., Cangxian County, 
which is located to the south of Beijing and Tianjin and to 
the east of the Bohai Sea (Fig. 1). Cangxian County has 
diverse soil types and a temperate monsoon climate. The 
dominant CS used to be the winter wheat – summer maize 
double CS, and groundwater is the primary irrigation water 
source. However, a number of farms have changed to the 
cultivation of the maize single CS instead of the traditional 
double CS since the late 1990s (Wang et al., 2016). Since 
2014, Cangxian County has become one of the pilot areas 
for the fallow land policy in the NCP. 

 
Fig. 1  Location of the case study area 
 

2.2  Data collection 
Household survey data collected between March and May in 
2015 are the main data used in this study. During the 
household survey process, a stratified random sampling 
method was applied to choose households within the 35 
villages randomly selected in the case study area, and 912 
households were randomly selected in each village. 
Semi-structured one-on-one interviews were conducted with 
the household heads in order to gather the information for 
agricultural year 20132014. Ultimately, we received 350 
valid household questionnaires from the 35 villages.  

The household questionnaire mainly contains information 
about the households and their land plots, including the 
physical information for each land plot, e.g., land quality, 
plot size, land ownership, and so on. Specific information 
regarding inputs (labor, seed, machinery, fertilizer, pesticide 
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and irrigation) and outputs (i.e., quantities of wheat and 
maize) were also gathered. In addition, we recorded the 
demographic characteristics of the household members, e.g., 
age, education status, occupation, and income. 

2.3  Theoretical model 
The stochastic production frontier approach was selected for 
quantifying the impacts of LF and CS on farm performance 
in the case study area. Specifically, the impact on productiv-
ity was identified by setting relevant indicators as inde-
pendent variables in the stochastic production frontier func-
tion, while the impact on TE could be identified by setting 
the potential indicators in the technical inefficiency model. 

The stochastic production frontier model regards the 
grain output as a stochastic production process, using the 
multiple-input one-output production function as follows: 

 
( ; ) exp ( )i i iQ f X A              (1) 

where X represents a vector of inputs, A represents the 
technology parameter vector, and f(·) represents the produc-
tion frontier function. The subscripts i represent individual 
households. Therefore, Qi is the output that should be ob-
tained for household i, which is no smaller than the ob-
served output Q0 of household i due to inefficiency and oth-
er factors, i.e., the error term (εi). εi can be decomposed into 
two components: 

 i i iv                  (2) 
where vi represents the noise, which is assumed to have a 
distribution that is identical to and independent from N(0, 

2
v ), while μi is an unobservable random variable with a 

non-negative value and represents the inefficiency effect of 
the observations. The distribution of μi is assumed to be N(μi, 

2
i )+. The mean μi can be defined using the following 

technical inefficiency model: 
 0i d di

d

W                 (3) 

where diW represents the d-th explanatory variable relevant 
to the inefficiency of household i, and δ0 and δd represent 
the coefficients to be estimated. 

The isoquant curve of the fully efficient producer (Iso-
quant curve 1) permits the measurement of TE (Fig. 2). 
Suppose that LF is one of the inputs for grain producers, 
then a household operating at point A has achieved full effi-
ciency. However, a household operating at point B suffers  

 
 

Fig. 2  Description of the technical efficiency (TE) 

from a technical inefficiency effect, whose TE can be ex-
pressed as: 
 /TE OA OB                  (4) 
where TE ranges between zero and one, and is inversely 
correlated with the inefficiency effect; OA and OB refer to 
different levels of production. 

The maximum likelihood estimation (MLE) method is 
usually applied to estimate the parameters, and the likeli-
hood function is constructed using two variance parameters, 

2 2 2
v      and 2 2/   . Specifically,  represents 

the ratio of the variance of household-specific TE to the 
total variance of grain output, which ranges between zero 
and one. According to Battese and Coelli (1995), if  is not 
significantly different from zero, then the variance of the 
inefficiency effects should be zero. In addition, the tradi-
tional mean response function should be applicable, in 
which variables influencing technical inefficiency can be 
included directly in the production frontier function. 

2.4  Empirical model 
The production frontier function for grain producers in the 
case study area can be specified using the Cobb-Douglas 
production function, which is widely applied in many stud-
ies relevant to agricultural production in China because of 
its suitability for Chinese agriculture and lower probability 
of multicollinearity compared with the translog production 
function, i.e., an alternative to the Cobb-Douglas production 
function (Lin, 1992; Qin et al., 2011; Yang et al., 2017). 
Empirically, the Cobb-Douglas production frontier function 
for household i is set as: 

 0ln ln lni j ij k ik i iY X Z v           (5) 

where Yi is the grain output (kg ha–1) of household i during 
the agricultural year 2013–2014, which is estimated by di-
viding the total production of wheat and maize by the total 
agricultural land area of household i. Crops other than wheat 
and maize are ignored in the models in this study, as the 
proportion of their combined sown areas to the total area 
investigated is quite small (less than 3%). The X’s are the 
production inputs, including labor, seed, machinery, fertil-
izer, pesticide and irrigation; as indicated by j=1, 2, …, 6. 
The input costs are obtained separately for wheat and maize 
grown in a land plot, and they are then added for both crops 
for each household. As irrigation inputs contain zero values 
for a number of households, they should be specified as 
ln{max(Irrigation, 1–Irrigation users)} (Battese and Coelli, 
1995). Here, Irrigation users is treated as a dummy variable, 
as there are zero values of Irrigation. The Zik are the vari-
ables representing LF and CS, which are included in some 
of the modeled estimates. Specifically, average plot size 
(Average_size) is selected as the indicator of LF, as it was 
often used in previous studies (Rahman and Rahman, 2008; 
Tan et al., 2010). A smaller value of Average_size implies a 
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weaker connectivity and a more fragmented landscape. The 
multiple cropping index (MCI) represents the CS and is es-
timated as the ratio of total areas sown with wheat 
( _ iWheat area ) and maize ( _ iMaize area ) to the total 
farmland area (Areai) of household i. 

 

_ _i i
i

i

Wheat area Maize area
MCI

Area


       (6) 

The value of MCI ranges between one and two (Table 1). It 
takes the value of one when all land plots adopt the maize 
single CS and it approaches two when all land plots adopt 
the wheat-maize double CS. Therefore, a larger MCIi indi-
cates that more land plots grow wheat in household i. The 
final variables, vi and μi, have the same meanings as in 
equation (2). 

The empirical technical inefficiency model is set as: 

 
0i d di k ki i

d

M Z                 (7) 

where the Mdi are household specific characteristics which 
explain inefficiency, and are considered to effect productiv-
ity indirectly by influencing TE. In this study, average land 
quality (Qlandi) is considered to be one of the likely indica-
tors influencing TE, which is defined as the ratio of the ag-
gregate product of the land quality (Land_qualityik) and area 
(Areaik) for each land plot to the total farmland area (Areai) 
for household i. 

 

_ ik ik
i

i

Land quality Area
Qland

Area


      (8) 

There are four grades for Land_qualityik: 1 for good land, 
2 for relatively good land, 3 for relatively poor land and 4 
for poor land, as judged mainly by the results obtained dur-
ing the implementation of the HRS in the study area (Wang 
and Li, 2018a). Thus, a high Qland value indicates a low 

LQ, and the lower the Qland, the better the LQ.  
Additional indicators in this model include the age and 

education of the household head, the ratio of agricultural 
labor to family size (Ragrilabor), the ratio of off-farm labor 
to total labor (Routlabor) and the average income per 
off-farm labor (Aincome). The Z’s have the same meanings 
as in equation (5). i  is the unobservable random error, 
which has an independent distribution. 

In this study, we assume that LF and CS have effects on 
both farm productivity and efficiency, and therefore, we 
develop four distinct models with different variables in-
cluded. In Model 1, only six input variables are considered 
in the production frontier function, while the indicators rep-
resenting LF and CS, i.e., Average_size and MCI, and other 
indicators representing land quality and household charac-
teristics are included in the inefficiency model. In Model 2, 
the production frontier function includes both the input var-
iables and the Average_size, while the MCI are included in 
the inefficiency model. In Model 3, we assume that produc-
tivity can be influenced by CS, without considering LF. 
Therefore, the MCI is in the production frontier function, 
while the Average_size is included in the inefficiency model. 
In contrast, Model 4 considers the impacts of LF and CS on 
productivity, and the Average_size and the MCI are both 
considered in the production frontier function, rather than in 
the inefficiency model. 

The TE of household i (TEi) can be empirically estimated 
by obtaining the expressions for the conditional expectation 
μi upon the observed value of εi. 

 
E(exp( ) )i i iTE             (9) 

Table 1 presents the descriptions and summary statistics 
for all of the variables in equation (5) and equation (7). 

 

Table 1  Summary statistics of variables 

Variable Description Mean S.D. Min. Max. 

Grain output Per hectare grain output of the household (kg ha–1) 7371.00 3701.68 750.00 20250.00 

Labor Per hectare input of family labor (person-day ha–1) 31.80 19.83 3.00 123.96 
Seed Per hectare cost of seed (yuan ha–1) 1437.42 790.62 197.37 6800.00 
Machinery Per hectare cost of machinery (yuan ha–1) 3340.38 766.44 900.00 4986.67 
Fertilizer Per hectare cost of fertilizer (yuan ha–1) 4121.32 1572.53 900.00 10016.13 
Pesticide Per hectare cost of pesticide (yuan ha–1) 209.51 231.46 6.00 2000.00 

Irrigation Per hectare cost of irrigation (yuan ha–1) 518.39 484.88 30.00 3290.00 

Irrigation users Dummy (1=Used irrigation, 0=No) 0.73 0.45 0.00 1.00 

Average_size Total agricultural land area divided by number of plots (ha) 0.16 0.06 0.05 0.40 
MCI Multiple cropping index 1.55 0.37 1.00 2.00 
Qland Average quality of farmland weighted by area 2.01 0.68 1.00 4.00 
Age Age of household head (year) 56.92 10.55 24.00 87.00 

Education Education status of the household head (1=illiterate; 2=primary school; 
3=junior middle school; 4=senior middle school; 5=college or above) 2.29 0.79 1.00 5.00 

Ragrilabor Ratio of agricultural labor to family size 0.49 0.25 0.10 1.00 
Routlabor Ratio of off-farm labor to total labor 0.35 0.28 0.00 0.83 
Aincome Average income per off-farm labor (×104 yuan person–1 yr–1) 1.24 0.86 0.00 4.56 
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3  Results and discussion 
3.1  Background information on the sample  

households and their land plots 
Table 1 shows that the average plot size of the sample 
households is 0.16 ha. This is much larger than that in the 
mountainous areas of Southwest China, such as Chongqing 
City (0.05 ha), while it equals the average plot size in Ji-
angsu Province (0.16 ha) and represents only one-fourth of 
the average plot size for rice production plots in the Jiang-
han Plain (0.60 ha) (Wang et al., 2017; Lu et al., 2018; 
Wang et al., 2019). Both the single CS and the double CS 
are common in the case study area, with the average MCI 
equal to 1.55. The land quality is not good, as the average 
value of Qland equals 2.01. Household heads are usually 
relatively old and have low education levels, because the 
average values for Age and Education are 56.92 and 2.29,  

respectively. In addition, family size and non-agricultural 
income are often regarded as potential factors influencing 
farmers’ efficiency. The average ratio of agricultural labor to 
the family size is 0.49, while the average ratio of off-farm 
labor to total labor is 0.35. For the off-farm laborers, their 
average income is 1.24×104 yuan person–1 yr–1. 
3.2  Hypothesis testing and model robustness 
As mentioned above, the MLE method is applied to obtain 
the parameters for the Cobb-Douglas production frontier 
and technical inefficiency models, and their results confirm 
that the γ values in the four models are all significantly dif-
ferent from zero (Table 2). Therefore, the μ term should be 
estimated using an inefficiency model. The estimated coef-
ficients for the same independent variable in the four mod-
els usually have consistent signs and the magnitudes of 
changes are small, implying that the results are robust with 
respect to parameter specification. 

 
Table 2  Parameter estimation results for the Cobb-Douglas production frontier and technical inefficiency models 

Variables Model 1 Model 2 Model 3 Model 4 

Production frontier Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 

ln(Labor) 0.197*** 0.040 0.213*** 0.039 0.167*** 0.042 0.175*** 0.041 

ln(Seed) 0.122*** 0.032 0.128*** 0.031 0.098*** 0.030 0.104*** 0.029 

ln(Machinery) 0.108 0.166 0.107 0.161 0.069 0.170 0.090 0.167 

ln(Fertilizer) 0.077 0.047 0.052 0.047 0.074 0.046 0.057 0.045 

ln(Pesticide) 0.020** 0.009 0.015* 0.008 0.018** 0.004 0.015** 0.007 

ln(Irrigation) 0.009** 0.004 0.009** 0.004 0.008*** 0.004 0.007* 0.004 

Average_size   0.926*** 0.224   0.757*** 0.225 

MCI     0.241*** 0.052 0.229*** 0.051 

Constant 7.120*** 0.450 7.012*** 0.409 7.363*** 0.441 7.326*** 0.429 

Inefficiency predictors 

Age 0.005** 0.002 0.007* 0.004 0.007* 0.004 0.011 0.008 

Education 0.003 0.027 0.002 0.038 0.006 0.039 0.016 0.058 

Ragrilabor 0.128 0.152 0.159 0.215 0.185 0.228 0.226 0.065 

Routlabor 0.219* 0.115 0.281* 0.140 0.308* 0.305 0.148 0.371 

Aincome 0.029 0.026 0.024 0.035 0.040 0.039 0.034 0.055 

Qland 0.150*** 0.038 0.195*** 0.068 0.211*** 0.075 0.283** 0.137 

Average_size 1.521*** 0.493   1.916*** 0.776   

MCI 0.293*** 0.092 0.381*** 0.150     

Constant 0.275 0.271 0.276 0.493 0.613 0.564 1.638 1.246 

Model diagnostics 
2 2 2

v     0.077*** 0.016 0.100*** 0.032 0.107*** 0.035 0.148** 0.071 
2 2 2/ ( )v       0.815*** 0.062 0.834*** 0.053 0.862*** 0.049 0.887*** 0.049 

H0: No inefficiency component (Prob. ≤ z): 

  0.000 0.000 0.000 0.000 

Total number of  
observations 350 350 350 350 

Note: * P < 0.1; ** P < 0.05; *** P < 0.01.  
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In the next two sections, we will first analyze the results 
of the production frontier functions, and then turn to the 
results of the inefficiency models. 

3.3  Results of the production frontier functions 
The upper part of Table 2 shows the results of the produc-
tion frontier models. Four of the six basic production input 
variables (i.e., labor, seed, pesticide and irrigation) signifi-
cantly influence farmers’ productivity. Labor proves to be 
the most important of them, as its coefficient is the largest, 
and the increase in labor input can improve farm productiv-
ity. With respect to seed and irrigation, increases in their 
inputs also contribute to the improvement of grain output, 
although they have smaller coefficients than labor. In com-
parison, the coefficients of pesticide are negative and sig-
nificant in all models, which may be due to the fact that 
pesticide is used more extensively in land plots that suffer 
from more diseases and pests, where outputs are lower. 
Therefore, this variable can be regarded as an inverse proxy 
for diseases and pests. In terms of machinery and fertilizer, 
their impacts on farm productivity are not significant, im-
plying that they may be sources of excessive investment 
without causing obvious improvements in agricultural per-
formance. 

The coefficients of the LF variable (i.e., Average_size), 
are positive and significant in both Model 2 and Model 4, 
indicating that Average_size is positively related to grain 
output and the improvement of LF (i.e., larger values of 
Average_size) can significantly enhance the farm productiv-
ity in the case study area. The reason for this effect may be 
that LF induces the non-productive inputs, including labor, 
seed, and land, which reduces the output. The same rela-
tionship was found for the rice producers in the Jianghan 
Plain and the grain producers in the mountainous areas of 
Chongqing City (Wang et al., 2017; Wang et al., 2019). The 
MCI also showed positive signs in the production functions 
in Model 3 and Model 4, meaning that a larger MCI is asso-
ciated with a higher output; and, in contrast, the adoption of 
the single CS significantly weakens farm productivity. The 
intensified land use type, represented by the double CS, is 
conducive to obtaining a high output, mainly due to the effi-
cient utilization of farm inputs.  

3.4  Results of the technical inefficiency models 
The household specific scores of TE can be calculated using 
equation (9), and the corresponding summary statistics are 
listed in Table 3. Specifically, Model 1, with the LF and CS 
variables both included in the inefficiency model, gives the 
lowest average TE score for the households, while Model 4, 
with the above variables both included in the production 
frontier models, estimates the largest average TE score. The 
value of the average TE in Model 2 is 80.2%, implying that 
the household can increase its productivity by about 24.69% 
[(100–80.2)100/80.2], given the current technology status 

and the level of inputs. In Model 1, the household produc-
tivity can be increased by about 35.69% [(100–73.7) 
100/73.7], which is the highest among the four models. In 
addition, the household TE takes a value between 33.0% 
(Model 1) and 96.7% (Model 2), showing a wide range of 
variation. 
 

Table 3  Technical efficiency (TE) scores 

Variables Model 1 Model 2 Model 3 Model 4 

Mean 0.737 0.778 0.776 0.802 

S. D. 0.135 0.128 0.130 0.124 

Min. 0.330 0.352 0.369 0.352 

Max. 0.965 0.967 0.966 0.967 
 
The results of the technical inefficiency models are listed 

in the lower part of Table 2. Considering that technical inef-
ficiency is specified as the dependent variable, a negative 
parameter coefficient indicates a negative effect of that in-
dependent variable on technical inefficiency, and thus, a 
positive impact on TE. 

According to the results of Model 1, the coefficient of 
Age is positive, meaning that the older the household head is, 
the less technically efficient the household will be. This can 
be explained by the fact that the production management 
capacity and the ability to obtain new technologies of older 
farmers are not as good as those of younger farmers. This 
was also found to be the case for the rice-planting farmers in 
the Jianghan Plain (Wang et al., 2017). The coefficient of 
Education is not significant, indicating that a high educa-
tional level is not necessary for grain production in the case 
study area. The impacts of some other indicators including 
Ragrilabor and Aincome are not significant, but the coeffi-
cient of Routlabor is positive, implying that households 
with a larger ratio of off-farm labor to total labor suffer 
from a lower level of efficiency. This implies that the 
off-farm employment can dampen the enthusiasm of the 
farmers to produce and diminish their TE. With respect to 
land quality, a positive impact on technical inefficiency is 
noted for the Qland, implying that the households with bet-
ter land quality (i.e., lower values of Qland) are less likely 
to suffer from technical inefficiency, and thus, they are 
more likely to achieve higher TE values. This has also been 
reported by a previous study of Wang et al. (2017). 

The Average_size is estimated to be significantly and 
negatively associated with technical inefficiency. In other 
words, LF shows a detrimental effect on TE, which should 
be attributed to the additional costs for households caused 
by LF, including the waste of inputs, the requirement of 
more travelling time, and consumption of working hours for 
labor when travelling between the homestead and land plots. 
This confirms the findings of Rahman and Rahman (2008) 
and Jia et al. (2017), who found an inverse relationship be-
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tween the LF and TE for individual crops, such as rice and 
barley. This is also similar to the findings of Qin et al. (2011) 
and Manjunatha et al. (2013), who reported that LF is nega-
tively associated with TE when multiple crops are taken into 
consideration. The coefficient of MCI for technical ineffi-
ciency is significant and negative, meaning that adopting the 
double CS can significantly improve TE and abandoning 
winter wheat can lead to a decrease of TE. A previous study 
by Yang et al. (2017) also found that MCI was positively 
correlated with the TE in the NCP, which is consistent with 
the finding of this study. 

4  Policy implications 
The results of this study show that the farm productivity and 
efficiency of grain producers are significantly influenced by 
both the LF and the CS in the case study area. Specifically, 
LF plays a detrimental role in both farm productivity and 
efficiency due to its negative management effect. Consider-
ing that increases of farm productivity and efficiency are of 
crucial importance for the food supply in major food pro-
duction areas like the NCP in China, and fragmented land is 
usually regarded as a bottleneck, policies aiming to reduce 
LF are strongly needed. Our results also show that 
Routlabor is significantly positive for technical inefficiency, 
implying that the households with large ratios of 
out-migration labor usually suffer from low values of TE. In 
this context, land transfers, from the households with large 
ratios of out-migration labor to those with ample agricul-
tural labor or to agricultural cooperatives, may be a good 
solution for decreasing LF by aggregating the scattered land 
plots into large blocks, and can therefore increase farm 
productivity and efficiency (Feng, 2008; Shao et al., 2015). 
However, the average ratio of land transfer in the case study 
area (4%) is much lower than that in China as a whole (35%) 
(Wang and Li, 2018a). Policies concerning land market im-
provements and rural land reconfirmations are suggested, 
with the goal of facilitating access to the land rental market 
and increasing longer-term land transfers (Feng, 2008; Ding 
and Zhong, 2017). 

We are also concerned about the impact of household CS 
on productivity and efficiency, and the results show that the 
influences of the CS variable, i.e., the MCI, are significant 
in both the production frontier and inefficiency models. 
Specifically, the MCI values vary among the households in 
the case study area, and the households adopting larger 
proportions of double CS, i.e., those with larger values of 
MCI, usually experience higher levels of farm productivity 
and efficiency. However, the NCP is suffering from the 
abandonment of winter wheat due to the fallow land policy, 
which aims to alleviate the groundwater overexploitation. 
This inevitably causes a decrease of the MCI and thus plays 
a detrimental role in the productivity and efficiency of grain 
producers in the NCP, the bread basket of China, which may 

ultimately affect the stable supply of grain products in the 
NCP (Zhong et al., 2017). Previous studies have analyzed 
the effects of diversified crop rotations on groundwater 
consumption and food production in the NCP, and they 
concluded that compared with the traditional double CS and 
the single CS, diversifying crop rotations, such as triple 
cropping in two years and quadruple cropping in three years, 
usually resulted in smaller values for annual average 
groundwater decline and larger values for water use effi-
ciency (Meng et al., 2012; Yang et al., 2015). Therefore, we 
suggest that diversifying crop rotations, instead of just the 
single CS proposed by the central government, may be a 
better solution for mitigating the groundwater overexploita-
tion while guaranteeing the agricultural productivity, effi-
ciency and food supply in the NCP (Yang et al., 2015; 
Wang et al., 2016). 

5  Conclusions 
Previous case studies were mainly concerned with the im-
pact of LF on productivity and efficiency for a single crop. 
However, farmers make land use decisions considering the 
profit of the whole farm, rather than the profit of just a sin-
gle crop. In this study, we consider the major crops, i.e., 
wheat and maize, and analyze the impacts of both LF and 
CS on productivity and efficiency for grain producers in the 
NCP, using Cangxian County of Hebei Province as an ex-
ample. The average plot size (Average_size) and the multi-
ple cropping index (MCI) are selected as indicators for rep-
resenting LF and CS, respectively. The results show that the 
coefficients of the Average_size and the MCI are both sig-
nificant and positive in the production frontier functions, but 
the coefficients of these two indicators are both significant 
and negative in the technical inefficiency models. Therefore, 
LF plays significant and detrimental roles in both farm pro-
ductivity and efficiency; and the wheat-maize double CS, 
rather than the maize single CS, is usually associated with 
high farm productivity and efficiency. In addition to LF and 
CS, farmers’ productivity is also significantly influenced by 
four basic production input variables, including labor, seed, 
pesticide and irrigation. The age of the household head and 
the ratio of off-farm labor to total labor are also found to be 
significantly relevant in determining TE. 

This study has quantified the impacts of LF and CS on 
the productivity and efficiency of grain producers in 
Cangxian County of the NCP. Based on the main findings 
of this study, it has uncovered the potential for achieving the 
twin goals of water conservation and food security from the 
perspective of the promotion of land transfer, and the ad-
justment of the cropping systems in the NCP. These find-
ings are meaningful and applicable in other cases concern-
ing the promotion of the land productivity and TE in areas 
with fragmented land and water shortage problems, not just 
in China, but around the world. 
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土地细碎化和种植制度对华北平原农户粮食生产及其效率的影响 

——基于河北省沧县的案例分析 
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摘  要：土地细碎化被普遍认为能够对农业生产产生影响。然而，已有研究多以单一作物为研究对象，且中国的相关案例

并不十分丰富。本文将多种作物考虑在内，以识别土地细碎化(LF)以及种植制度(CS)对华北平原农户粮食生产和效率的影响。以

河北省沧县作为案例区，基于农户及其地块尺度调查数据，构建了 4 个随机前沿生产函数和效率损失模型，探讨 LF 和 CS 的不

同组合对农户粮食生产及其效率的影响。研究发现，土地细碎化对粮食生产和技术效率均存在显著负向影响；作为种植制度的表

征指标，复种指数(MCI)的影响与 LF 正相反，小麦—玉米两熟制比玉米一熟制更有利于粮食生产及其技术效率的提高。除土地细

碎化和种植制度外，案例区农户粮食生产还受劳动力、种苗、农药和灌溉 4 种粮食生产基础投入要素的影响，效率损失则还受户

主年龄和家庭非农劳动力占总劳动力数量之比的影响。鉴于此，为实现粮食稳定供应和地下水超采治理的双重目标，政府应鼓励

华北平原土地流转并适当调整种植制度。 
 

关键词：土地细碎化；种植制度；随机前沿分析；粮食生产效率；华北平原 


